2,512 research outputs found

    Thermal and Electrical Properties of gamma-NaxCoO2 (0.70 < x < 0.78)

    Full text link
    We have performed specific heat and electric resistivity measurements of Nax_{x}CoO2_{2} (x=0.70x=0.70-0.78). Two anomalies have been observed in the specific heat data for x=0.78x=0.78, corresponding to magnetic transitions at Tc=22T_{c}=22 K and Tk≃9T_{k}\simeq 9 K reported previously. In the electrical resistivity, a steep decrease at TcT_{c} and a bending-like variation at TbT_{b}(=120K for x=0.78x=0.78) have been observed. Moreover, we have investigated the xx-dependence of these parameters in detail. The physical properties of this system are very sensitive to xx, and the inconsistent results of previous reports can be explained by a small difference in xx. Furthermore, for a higher xx value, a phase separation into Na-rich and Na-poor domains occurs as we previously proposed, while for a lower xx value, from characteristic behaviors of the specific heat and the electrical resistivity at the low-temperature region, the system is expected to be in the vicinity of the magnetic instability which virtually exists below x=0.70x=0.70.Comment: 4 pages (3 figures included) and an extra figure (gif), to be published in J. Phys. Soc. Jpn. 73 (9) with possible minor revision

    Large enhancement of the thermopower in Nax_xCoO2_2 at high Na doping

    Full text link
    Research on the oxide perovskites has uncovered electronic properties that are strikingly enhanced compared with those in conventional metals. Examples are the high critical temperatures of the cuprate superconductors and the colossal magnetoresistance in the manganites. The conducting layered cobaltate NaxCoO2\rm Na_xCoO_2 displays several interesting electronic phases as xx is varied including water-induced superconductivity and an insulating state that is destroyed by field. Initial measurements showed that, in the as-grown composition, NaxCoO2\rm Na_xCoO_2 displays moderately large thermopower SS and conductivity σ\sigma. However, the prospects for thermoelectric cooling applications faded when the figure of merit ZZ was found to be small at this composition (0.6<x<<x<0.7). Here we report that, in the poorly-explored high-doping region x>x>0.75, SS undergoes an even steeper enhancement. At the critical doping xp∟x_p\sim 0.85, ZZ (at 80 K) reaches values ∟\sim40 times larger than in the as-grown crystals. We discuss prospects for low-temperature thermoelectric applications.Comment: 6 pages, 7 figure

    Magnetic and Metal-Insulator Transitions in beta-Na0.5CoO2 and gamma-K0.5CoO2 -NMR and Neutron Diffraction Studies-

    Full text link
    Co-oxides beta-Na0.5CoO2 and gamma-K0.5CoO2 have been prepared by the Na de-intercalation from alpha-NaCoO2 and by the floating-zone method, respectively. It has been found that successive phase transitions take place at temperatures Tc1 and Tc2 in both systems. The appearance of the internal magnetic field at Tc1 with decreasing temperature T indicates that the antiferromagnetic order exists at T < Tc1, as in gamma-Na0.5CoO2. For beta-Na0.5CoO2, the transition temperatures and the NMR parameters determined from the data taken for magnetically ordered state are similar to those of gamma-Na0.5CoO2, indicating that the difference of the stacking ways of the CoO2 layers between these systems do not significantly affect their physical properties. For gamma-K0.5CoO2, the quantitative difference of the physical quantities are found from those of beta- and gamma-Na0.5CoO2. The difference between the values of Tci (i = 1 and 2) of these systems might be explained by considering the distance between CoO2 layers.Comment: 8 pages, 14 figures, 1 Tabl

    NMR studies of Successive Phase Transitions in Na0.5CoO2 and K0.5CoO2

    Full text link
    59Co- and 23Na-NMR measurements have been carried out on polycrystalline and c-axis aligned samples of Na0.5CoO2, which exhibits successive transitions at temperatures T = 87 K (= Tc1) and T = 53 K (= Tc2). 59Co-NMR has also been carried out on c-axis aligned crystallites of K0.5CoO2 with similar successive transitions at Tc1 ~ 60 K and Tc2 ~ 20 K. For Na0.5CoO2, two sets of three NMR lines of 23Na nuclei explained by considering the quadrupolar frequencies nuQ ~1.32 and 1.40 MHz have been observed above Tc1, as is expected from the crystalline structure. Rather complicated but characteristic variation of the 23Na-NMR spectra has been observed with varying T through the transition temperatures, and the internal fields at two crystallographically distinct Na sites are discussed on the basis of the magnetic structures reported previously. The internal fields at two distinct Co sites observed below Tc1 and the 591/T1-T curves of Na0.5CoO2 and K0.5CoO2 are also discussed in a comparative way.Comment: 7 pages, 10 figures, submitted to J. Phys. Soc. Jpn, correction is made in right colum of p6 (35th line) as K0.5CoO2-->Na0.5CoO

    Charge Fluctuations in Geometrically Frustrated Charge Ordering System

    Full text link
    Effects of geometrical frustration in low-dimensional charge ordering systems are theoretically studied, mainly focusing on dynamical properties. We treat extended Hubbard models at quarter-filling, where the frustration arises from competing charge ordered patterns favored by different intersite Coulomb interactions, which are effective models for various charge transfer-type molecular conductors and transition metal oxides. Two different lattice structures are considered: (a) one-dimensional chain with intersite Coulomb interaction of nearest neighbor V_1 and that of next-nearest neighbor V_2, and (b) two-dimensional square lattice with V_1 along the squares and V_2 along one of the diagonals. From previous studies, charge ordered insulating states are known to be unstable in the frustrated region, i.e., V_1 \simeq 2V_2 for case (a) and V_1 \simeq V_2 for case (b), resulting in a robust metallic phase even when the interaction strenghs are strong. By applying the Lanczos exact diagonalization to finite-size clusters, we have found that fluctuations of different charge order patterns exist in the frustration-induced metallic phase, showing up as characteristic low energy modes in dynamical correlation functions. Comparison of such features between the two models are discussed, whose difference will be ascribed to the dimensionality effect. We also point out incommensurate correlation in the charge sector due to the frustration, found in one-dimensional clusters.Comment: 8 pages, 9 figure

    Comparison of analytical film theory and a numerical model for predicting concentration polarisation in membrane gas separation

    Get PDF
    Accurate prediction of the concentration polarisation (CP) effect is very important in the design of an efficient membrane-based gas separation process. This study analyses the reliability of analytical film theory (FT) for evaluating the performance of gas separation membranes in terms of CP and flux. The analytical model is compared against a more rigorous numerical model developed by using Computational Fluid Dynamics (CFD) for various operating variables. The results show that the FT prediction is less accurate at high CP conditions when gas permeation through the membrane increases, due to higher permeance selectivity and pressure ratio. Hence, the results suggest that FT is not recommended for membranes with high permeance or high-pressure conditions. Given that the typical range of feed composition and temperature has little impact on fluid properties (i.e., gas diffusion coefficient, densities, and viscosities), the resulting CP does not vary much and hence both FT and CFD models predict a similar CP. The analysis also suggests that the FT model is more accurate in predicting CP in the region closer to the membrane entrance. Overall, the analytical film theory serves as a reliable approximation in membrane gas applications under low CP at high crossflow and low flux conditions

    Phase segregation in NaxCoO2 for large Na contents

    Full text link
    We have investigated a set of sodium cobaltates (NaxCoO2) samples with various sodium content (0.67 \le x \le 0.75) using Nuclear Quadrupole Resonance (NQR). The four different stable phases and an intermediate one have been recognized. The NQR spectra of 59Co allowed us to clearly differentiate the pure phase samples which could be easily distinguished from multi-phase samples. Moreover, we have found that keeping samples at room temperature in contact with humid air leads to destruction of the phase purity and loss of sodium content. The high sodium content sample evolves progressively into a mixture of the detected stable phases until it reaches the x=2/3 composition which appears to be the most stable phase in this part of phase diagram.Comment: 5 pages, 4 figure

    An improved constraint satisfaction adaptive neural network for job-shop scheduling

    Get PDF
    Copyright @ Springer Science + Business Media, LLC 2009This paper presents an improved constraint satisfaction adaptive neural network for job-shop scheduling problems. The neural network is constructed based on the constraint conditions of a job-shop scheduling problem. Its structure and neuron connections can change adaptively according to the real-time constraint satisfaction situations that arise during the solving process. Several heuristics are also integrated within the neural network to enhance its convergence, accelerate its convergence, and improve the quality of the solutions produced. An experimental study based on a set of benchmark job-shop scheduling problems shows that the improved constraint satisfaction adaptive neural network outperforms the original constraint satisfaction adaptive neural network in terms of computational time and the quality of schedules it produces. The neural network approach is also experimentally validated to outperform three classical heuristic algorithms that are widely used as the basis of many state-of-the-art scheduling systems. Hence, it may also be used to construct advanced job-shop scheduling systems.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and in part by the National Nature Science Fundation of China under Grant 60821063 and National Basic Research Program of China under Grant 2009CB320601
    • …
    corecore